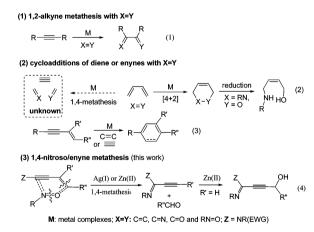


Zn(II)- or Ag(I)-Catalyzed 1,4-Metathesis Reactions between 3-En-1ynamides and Nitrosoarenes


Sagar Ashok Gawade, Deepak B. Huple, and Rai-Shung Liu*

Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, ROC

Supporting Information

ABSTRACT: Catalyst-dependent metathesis reactions between 3-en-1-ynamides and nitrosoarenes are described. Particularly notable are the unprecedented 1,4-metathesis reactions catalyzed by Ag(I) or Zn(II) to give 2propynimidamides and benzaldehyde derivatives. With 3en-1-ynamides bearing a cycloalkenyl group, 1,4-oxoimination products were produced efficiently. We have developed metathesis/alkynation cascades for unsubstituted 2-propynimidamides and benzaldehyde species generated *in situ*, to manifest 1,4-hydroxyimination reactions of 3-en-1-ynes. Both 1,4-oxoiminations and 1,4hydroxyiminations increase the molecular complexity of products.

Metal-catalyzed metathesis reactions represent the practical value of catalytic reactions in the fields of materials science and pharmaceuticals.¹ Metathesis reactions between alkynes and double-bond species X=Y (C=C, C=O, and C=N) are powerful tools to access various diene,¹ enone,² and enimine³ compounds via a 1,2-metathesis route (eq 1). We

disclosed that nitrosoarenes could act as nucleophiles to react with Au(I)- π -alkynes to furnish the first nitroso/alkyne metathesis reactions (eq 1).⁴ Although 1,3-dienes and 3-en-1ynes are readily available for unsaturated four-carbon motifs, their metal-catalyzed reactions with alkenes, carbonyl, imines, or alkynes occur exclusively with [4+2]-cycloadditions (eqs 2 and 3).^{5,6} Lewis acid-catalyzed [4+2]-cycloadditions of 1,3dienes with nitrosoarenes⁷ are accessible to N- and Ocontaining functionalized molecules after cleavage of a N–O bond (eq 2). Our initial task is to achieve new metal-catalyzed

[4+2]-cycloadditions between nitrosoarenes and 3-en-1-ynes. Initial use of Au(I) catalysts affords 1,2-metathesis products,⁴ as depicted in eq 1, but a switch to Zn(II) and Ag(I) catalysts surprisingly implements 1,4-enyne/nitroso metathesis reactions to afford aldehydes and 2-propynimidamides efficiently (eq 4). Herein, a bond order of 2 is increased or decreased between the two neighboring (or interacting) atoms of reactants, thus conforming a metathesis model. Similar 1,4-metathesis reactions were noted between singlet oxygen and a few 3-en-1-ynes, but prolonged photolysis was required to achieve good yields of products (16-64 h).⁸ For the resulting unsubstituted 2-propynimidamides (R' = H) and aldehydes, we also accomplish their subsequent alkynations in a one-pot operation to afford alkynol derivatives efficiently, highlighting new hydroxyiminations of 3-en-1-ynes.

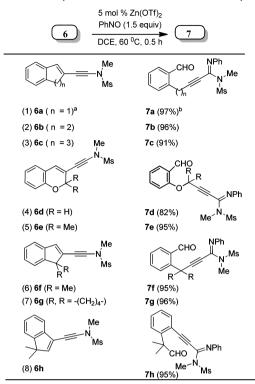
We first tested the reactions of 3-en-1-ynamide 1a with nitrosobenzene (2a) using IPrAuNTf₂ (5 mol%, IPr = 1,3bis(diisopropylphenyl)imidazol-2-ylidene) and LAuNTf₂ (5 mol%, L = $P(tBu)_2(o-biphenyl)$ in dichloroethane (DCE, 28 °C), from which we isolated a 1,2-metathesis product (5a) in good yields (81-90%) together with a 2-propynimidamide (3a) and benzaldehyde (4a) in 3-5% yields (Table 1). Astonishingly, silver salts (5 mol%) like AgNTf₂, AgOAc, and AgOTs gave 1,4-metathesis products 3a and 4a in high yields (88–95%, entries 3–5) in DCE (28 °C), with AgOAc being the most effective. Cheap zinc catalysts Zn(OTf)₂ and ZnCl₂ were also active catalysts for such a 1,4-envne/nitroso metathesis in DCE at 60 °C (2-3 h) to give 3a and 4a in 90–98% yields. For AgOAc, the reactions were compatible with various solvents, including dichloromethane (DCM), MeCN, and THF, giving 3a and 4a in 85-92% yields. No reactions occurred in the absence of a metal catalyst, even though the starting mixture was heated in DCE (60 °C) for 10 h; UV irradiation of the same reagents alone in DCE (0 °C, 10 h) gave complicated mixtures of products.

We examined the reactions of various 3-en-1-ynamides 1 and nitrosoarenes 2 to assess the scope of applicable substrates. The 1,4-metathesis reactions were performed with $Zn(OTf)_2$ (5 mol %) in DCE (60 °C, 2 h). For 3-en-1-ynamides 1b-1d bearing different sulfonamides (NR(EWG) = NMeTs, NPhTs, and N(*n*Bu)Ts), their resulting products 3b-3d and benzaldehyde 4a were obtained with yields exceeding 91% (Table 2, entries 1–3). We tested the reactions on other 3-en-1-ynamides 1e-1h bearing a varied R¹ substituent (R¹ = 4-bromo- and 4-methoxyphenyl, 2-furanyl, and cyclohexenyl), affording the

Received: December 18, 2013 Published: February 12, 2014

Table 1. 1,2- versus 1,4-Metathesis Reactions

Ph	Me 5 mol % 5 mol % catalyst catalyst condition 2a (1.5 equiv)	CHO + 1 4a	Ph Ph Sa				
			conditi	products (%) ^c			
entry	catalyst ^a	solvent	<i>T</i> (°C)	<i>t</i> (h)	3a	4a	5a
1	IPrAuCI/AgNTf ₂	DCE	28	15	5	5	81
2	LAuCI/AgNTf ₂	DCE	28	0.5	3	3	90
3	AgNTf ₂	DCE	28	20	88	88	-
4	AgOAc	DCE	28	5	95	95	_
5	AgOTs	DCE	28	8	92	92	_
6	$Zn(OTf)_2$	DCE	60	2	98	98	-
7	ZnCI ₂	DCE	60	3	90	90	_
8	AgOAc	DCM	28	2	92	92	_
9	AgOAc	MeCN	28	3.5	88	88	_
10	AgOAc	THF	28	3.5	85	85	_
11	-	DCE	60	10	10	-	-

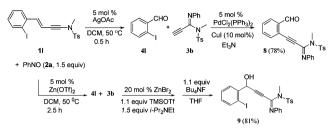

^{*a*}IPr = l,3-bis(diisopropylphenyl)imidazol-2-ylidene), L = P(tBu)₂(o-biphenyl). ^{*b*}[1a] = 0.14 M. ^{*c*}Product yields are reported after purification from a silica column.

desired 2-propynimidamide **3a** and aldehydes **4e**–**4h** in 83– 97% yields (entries 5–7). These Zn(II)-catalyzed reactions were extensible to enyne substrates **1i**–**1k** bearing an alkyl or phenyl substituent (\mathbb{R}^2 = methyl, isopropyl, and phenyl), giving 2-propynimidamides **3i**–**3k** and benzaldehyde **4a** in 87–94% yields (entries 8–10). This synthetic method was applicable to additional nitrosoarenes **2b**,**2c** (X = NO₂, isopropyl), giving desired **3l**,**3m** and benzaldehyde **4a** in 91–95% yields (entries 10–12).

To demonstrate the feasibility of a new 1,4-oxoimination of 3-en-1-ynes with nitrosobenzene **2a**, we prepared cyclic alkenes bearing an ethynylamide group, **6a**-**6h**; the resulting products **7a**-**7h** would hence contain both oxo and imine functionalities (Table 3). Such 1,4-oxoiminations were implemented by $Zn(OTf)_2$ (5 mol%) and **2a** (2.0 equiv) in hot DCE (60 °C, 0.5 h). Entries 1-3 show the efficient productions of desired

Table 3. Zn-Catalyzed 1,4-Oxoimination of 3-En-1-ynamides

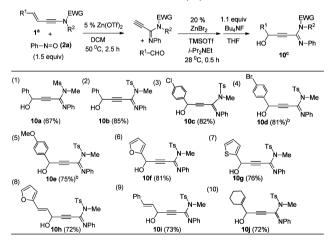
 $a^{'}[6] = 0.14$ M. ^bProduct yields are reported after purification from a silica column.


benzaldehyde derivatives 7a-7c with yields >91% from cyclic alkene derivatives 6a-6c of various sizes (n = 1-3). These 1,4-oxoimination reactions were also applicable to oxacyclic alkene derivatives 6d,6e (R = H, Me), giving desired products 7d,7e in 82–95% yields (entries 4 and 5). For disubstituted indenes 6f,6g bearing a 2-ethynylamide, 7f,7g were produced with 95–96% yields (entries 6 and 7). For the 3-indenyl ethynylamide analogue 6h, the same reaction afforded an aliphatic aldehyde (7h) in 95% yield (entry 8).

$ \begin{array}{c} R^{1} \longrightarrow R^{2} \\ R^{2} \longrightarrow R^{2} \\ 1 \\ 1 \\ $										
	enyne					products (yield, %)				
entry	1	\mathbb{R}^1	R ²	NR (EWG)	nitroso 2 (X)	3	4			
1	1b	Ph	Н	N(Me)Ts	2a (H)	3b (92)	4a (92)			
2	1c	Ph	Н	N(Ph)Ts	2 a (H)	3c (91)	4a (91)			
3	1d	Ph	Н	N(nBu)Ts	2a (H)	3d (98)	4a (98)			
4	1a	$4-BrC_6H_4$	Н	N(Me)Ms	2a (H)	3a (94)	4e (94)			
5	1f	4-MeOC ₆ H ₄	Н	N(Me)Mb	2a (H)	3a (97)	4f (97)			
6	1g	2-furanyl	Н	N(Me)Ms	2a (H)	3a (83)	4g (83)			
7	1h	cyclohexenyl	Н	N(Me)Mb	2a (H)	3a (93)	4h (93)			
8	1i	PH	Me	N(Me)Ms	2a (H)	3i (94)	4a (94)			
9	1j	Ph	<i>i</i> Pr	N(Me)Ms	2a (H)	3j (90)	4a (90)			
10	1k	Ph	Ph	N(Me)Ms	2a (H)	3k (87)	4a (87)			
11	1a	Ph	Н	N(Me)Ms	2b (NO ₂)	3l (91)	4a (91)			
12	1a	Ph	Н	N(Me)Ms	2c (<i>i</i> Pr)	3m (95)	4a (95)			

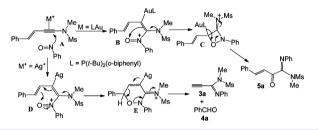
a[1] = 0.14 M. ^bProduct yields are reported after purification from a silica column.

Simultaneous production of unsubstituted 2-propynimidamides and aldehydes allows their further elaborations with catalytic formation of a carbon–carbon bond. Scheme 1 depicts


Scheme 1. Two One-Pot Cascade Reactions

two one-pot cascade reactions between 3-en-1-ynamide 11 and nitrosobenzene 2a (2 equiv) under optimized conditions. Treatment of these reactants with AgOAc (5 mol%) in DCM (50 °C, 0.5 h) delivered 2-iodobenzaldehyde (41) and a 2propynimidamide 3b efficiently; to this solution were added PdCl₂(PPh₃)₂, CuI (10 mol%), and Et₃N (15 equiv) to effect an *in situ* Sonogashira reaction,⁹ giving a desired coupling product 8 in 78% yield. Alternatively, we employed Zn(OTf)₂ (5 mol%) to catalyze the initial metathesis reaction in a sealed flask (DCM, 50 °C, 2.5 h), followed by a reported alkynylation¹⁰ *in situ* of aldehyde 41 with ZnBr₂ (20 mol%), TMSOTf (1.1 equiv), and *i*Pr₂NEt (1.5 equiv) in the same solution. A final workup with Bu₄NF in THF afforded alkynol derivative 9 in 81% yield.

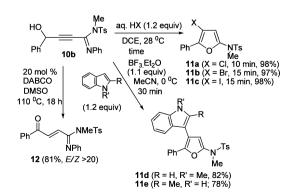
The formation of an alkynol product like **9** from 3-en-1ynamide **11** is synthetically interesting because this transformation represents a novel 1,4-hydroxyimination of a 3-en-1yne. Table 4 shows the generalization of such reactions with


^{*a*}[1] = 0.14 M TMSOTf (1.0 equiv), iPr_2NEt (1.5 equiv). ^{*b*}External 4-MeOC₆H₄CHO (1.0 equiv) was added in entry 5, and 2-furyl- and 2-thienyl aldehydes (0.5 equiv) were added in entries 6 and 7 before their alkynylations. ^{*c*}Products are reported efter separation from a silica column.

additional examples. In entries 5–7, external aldehydes R^1 CHO ($R^1 = 4$ -MeOC₆H₄, 2-furyl, and 2-thienyl, 0.5 or 1.0 equiv) were added before the alkynation because of their lower reactivity. These one-pot reactions were accessible to alkynols **10a,10b** bearing various sulfonamides (NR²EWG = NMeMs, NMeTs); the yields were 67–85% (entries 1 and 2). The

reactions were applicable to 3-en-1-ynamides bearing different styryl groups ($R^1 = XC_6H_4$, X = Cl, Br, and MeO, entries 3–5), giving desired alkynols **10c–10e** in 75–82% yields. These zinc-catalyzed reactions were amenable to the synthesis of heteroaryl-substituted alkynols **10f**,**10g** ($R^1 = 2$ -furanyl and 2-thienyl) with satisfactory yields (76–81%, entries 6 and 7). For 3-en-1-ynamides bearing varied alkenyl substituents, the related 4-en-1-yn-3-ols **10h–10j** were produced efficiently (72–73%, entries 8–10).

Shown in Scheme 2 is a plausible mechanism to rationalize catalyst-dependent chemoselectivity of 1,2- versus 1,4-meta-


Scheme 2. A Plausible Mechanism for 1,2- and 1,4-Metathesis Reactions

thesis reactions; we envisage that both reactions proceed via an initial attack of nitrosobenzene at metal π -alkyne species A. In recent work, we demonstrated that LAu^+ (L = P(tBu)₂(obiphenyl)) is more electron-rich than Ag⁺ to direct a 1,2-shift of the neighboring group through a hyperconjugation effect.¹¹ For LAu (L = $P(tBu)_2$ (o-biphenyl)), the alkenylgold C=C bond of intermediate B is thus highly electron-rich and nucleophilic to attack the oxygen of the nitrosonium moiety to generate species C, of which the weak N–O bond is readily cleaved by LAu to give 1,2-metathesis product 5a. In contrast, dienylsilver species D behaves like normal dienes to undergo a well-known [4+2]cycloaddition,⁷ giving a cycloadduct intermediate, E. We envisage that its weak N-O bond is the major reason for molecular fragmentation to generate the terminal 3-iminoalkyne **3a** and benzaldehyde, rather than giving a [4+2]-nitroso cycloadduct through a protodemetalation.

We have developed new synthetic use of an alkynol derivative, **10**. As depicted in Scheme 3, treatment of an alkynol **10b** with aqueous HX (1.2 equiv, X = Cl, Br, and I) in DCE (28 °C, 10–15 min) delivered highly substituted aminofurans **11a–11c** in excellent yields (97–98%). We have determined their structures with ¹H NOE spectra. Likewise, treatment of this alkynol with indoles (1.2 equiv) and BF₃·Et₂O (1.1 equiv) afforded aminofurans **11d,11e** of the same type; the

Scheme 3. Synthetic Applications of 3-Imidoylalkynol 10b

corresponding yields were 78–82%. The molecular structure of **11e** was confirmed by X-ray diffraction.¹² The mechanism of these new cyclizations is provided in the Supporting Information. Alkynol **10b** was transformed into an *E*-configured enone **12** according to a reported DABCO-catalyzed rearrangement;¹³ its structure is distinct from that of the enone **5a** given from a 1,2-nitroso/alkyne metathesis reaction (Table 1).

In summary, we report catalyst-dependent chemoselectivities in the metathesis reactions of 3-en-1-ynamides¹⁴ with nitrosoarenes. LAuNTf₂ (L = $P(tBu)_2(o-biphenyl)$ catalyzed 1.2metathesis reactions, whereas AgNTf₂ or Zn(OTf)₂ implemented unprecedented 1.4-metathesis reactions. Before this work, metal-catalyzed metathesis reactions were strictly limited to a 1,2-metathesis mode, whereas 1,3-dienes and 3-en-1-ynes exclusively undergo metal-catalyzed [4+2]-cycloadditions with double bond species. We prepared cycloalkene derivatives of 3en-1-ynamides in a series to achieve new 1,4-oxoimination reactions of 3-en-1-ynes. We have developed one-pot cascade reactions to activate an alkynation between unsubstituted 2propynimidamides and benzaldehyde derivatives generated in situ. The feasibility of such metathesis/alkynation cascades is manifested with sufficient examples, further highlighting novel 1,4-hydroxyiminations of 3-en-1-ynes. These alkynol products are readily transformed into substituted aminofurans or functionalized enones. The focus of this work is not only on the discovery of 1,4-metathesis reactions, but also includes the development of their new synthetic utility.

ASSOCIATED CONTENT

Supporting Information

X-ray crystallographic data of **11e**; experimental procedures and characterization data of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

rsliu@mx.nthu.edu.tw

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the National Science Council and the Ministry of Education, Taiwan, for supporting this work.

REFERENCES

(1) (a) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746.
 (b) Hansen, E. C.; Lee, D. Acc. Chem. Res. 2006, 39, 509.
 (c) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317.
 (d) Fürstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012. (e) Mori, M. In Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH; Weinheim, 2003. (f) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (g) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.

(2) For alkyne/carbonyl metathesis reactions, see: (a) Kurtz, K. C. M.; Hsung, R. P.; Zhang, Y. Org. Lett. **2006**, *8*, 231. (b) Jin, T.; Yamamoto, Y. Org. Lett. **2008**, *10*, 3137. (c) Rhee, J. U.; Krische, M. J. Org. Lett. **2005**, *7*, 2493. (d) Saito, A.; Umakoshi, M.; Yagyu, N.; Hanzawa, Y. Org. Lett. **2008**, *10*, 1783.

(3) For alkyne/imine metathesis reactions, see selected examples: (a) Ishitani, H.; Nagayama, S.; Kobayashi, S. J. Org. Chem. **1996**, 61, 1902. (b) Abramovitch, R. A.; Mavunkel, B.; Stowers, J. R.; Wegrzyn, M.; Riche, C. Chem. Commun. **1985**, 845. (c) Ruck, R. T.; Zuckerman, R. L.; Kyska, S. W.; Bergman, R. G. Angew. Chem., Int. Ed. **2004**, 43, 5372. (d) Saito, A.; Kasai, J.; Konishi, T.; Hanzawa, Y. J. Org. Chem. **2010**, 75, 6980. (4) Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 15372.

(5) For Diels-Alder and hetero-Diels-Alder reactions of 1,3-dienes, see selected reviews: (a) Fringuelli, F.; Taticchi, A. *The Diels-Alder Reactions*; Wiley-VCH: New York, 2001. (b) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. *Angew. Chem., Int. Ed.* 2002, 41, 1668. (c) Boger, D. L.; Weinreb, S. M. Hetero-Diels-Alder Methodology. In *Organic Synthesis*; Academic Press: San Diego, 1987. (d) Tietze, L.-F.; Kettschau, G. *Top. Curr. Chem.* 1997, 189, 1.

(6) For [4+2]-cycloaddition of 3-en-1-ynes with alkynes^{6a-e} and alkenes,^{6f} see: (a) Saito, S.; Salter, M. M.; Gevorgyan, V.; Tsuboya, N.; Tando, K.; Yamamoto, Y. J. Am. Chem. Soc. 1996, 118, 3970.
(b) Gevorgyan, V.; Takeda, A.; Homma, M.; Sadayori, N.; Radhakrishnan, U.; Yamamoto, Y. J. Am. Chem. Soc. 1999, 121, 6391. (c) Dunetz, J. R.; Danheiser, R. L. J. Am. Chem. Soc. 1999, 127, 5776. (d) Rubina, M.; Conley, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 5776. (d) Rubina, M.; Conley, M.; Gevorgyan, V. J. Am. Chem. Soc. 2006, 128, 5818. (e) Gorin, D. J.; Watson, I. D. G.; Toste, F. D. J. Am. Chem. Soc. 2008, 130, 3736. (f) Nieto-Oberhuber, C.; López, S.; Echavarren, A. M. J. Am. Chem. Soc. 2010, 132, 9292.

(7) (a) Bodnar, B. S.; Miller, M. J. Angew. Chem., Int. Ed. 2011, 50, 5630. (b) Yamamoto, Y.; Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 5962. (c) Yamamoto, Y.; Yamamoto, H. Angew. Chem., Int. Ed. 2005, 44, 7082. (d) Yamamoto, Y.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 4128.

(8) Under this photolytic condition, a six-membered cyclic allene intermediate was postulated in the photo-activated [4+2]-cyclo-addition of enynes with singlet oxygen: Lee-Ruff, E.; Maleki, M.; Duperrouzel, P.; Lien, M. H.; Hopkinson, A. C. *Chem. Commun.* **1983**, 346.

(9) Sonogashira, K.; Tohda, Y.; Hagihara, N. *Tetrahedron Lett.* **1975**, 4467.

(10) Downey, C. W.; Mahoney, B. D.; Lipari, V. R. J. Org. Chem. 2009, 74, 2904.

(11) This hyperconjugation arises from the stabilization of a σ M–C bond on its neighboring carbocation. This effect is very significant for electron-rich M = P(tBu)₂(o-biphenyl)Au but becomes less pronounced for electron-deficient M = Ag. See: Ghorpade, S.; Su, M.-D.; Liu, R.-S. Liu Angew. Chem., Int. Ed. **2013**, 52, 4229.

(12) Crystallographic data of **11e** are deposited in the Cambridge Crystallographic Data Center (CCDC-977801), and also available in the Supporting Information.

(13) Sonye, J. P.; Koide, K. J. Org. Chem. 2006, 71, 6254.

(14) For chemistry of ynamides, see: (a) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. *Chem. Rev.* **2010**, *110*, 5064. (b) Evano, G.; Coste, A.; Jouvin, K. *Angew. Chem., Int. Ed.* **2010**, *49*, 2840. (c) Wang, X.-N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. *Acc. Chem. Res.* **2014**, *47*, 560.